
Buoyancy Toolkit
version 2.01

The Buoyancy Toolkit is a code package for the Unity3D game engine that brings realistic
buoyancy simulation to your project. Rigidbodies will float when submerged in fluid volumes of
different densities and wave functions such as water pools or oceans with large waves. The
shape and volume of one or more connected colliders will be taken into account to let the
geometry follow the waves realistically. The toolkit is ideal for making anything float in water
but can also be used to simulate the lift a balloon or airship experiences in the atmosphere. The
toolkit is easy to use and does not require any scripting.

Contents

1 Features

2 What's new

3 Set up guide

4 Workflow

5 Components
 5.1 BuoyancyForce component
 5.2 FluidVolume component

6 Scripting reference
 6.1 BuoyancyForce component
 6.2 FluidVolume component

7 Example scenes
 7.0.1 Basic
 7.0.2 Compound
 7.0.3 Waves

8 Helpers
 8.1 SetCenterOfMass component

9 Known Limitations

10 Contact

1 Features

Realistic buoyancy simulation
Surface waves if a wave function is specified (using a custom script, example provided)
Weighting for straightforward tweaking of the buoyancy force
Disable weighting and use realistic object properties (scale, mass, fluid density) to mimic
real-life
Works well with other rigidbody forces

2 What's new

v2.01

Updated to Unity 2019.4 LTS

v2.0

Upgraded to Unity 5
Wave function is now defined in world space
Added support for the GO Ocean Toolkit
New example scenes

v1.41

Added the following properties to easily determine the state of a game object:
BuoyancyForce.IsSubmerged and BuoyancyForce.IsCompletelySubmerged
Fixed a bug where the toolkit would throw an error when an active FluidVolume was
removed
Fixed a rare bug where the toolkit would throw an error when very skinny buoyancy
colliders were used

3 Set up guide

1. Import the Buoyancy Toolit package into your project
2. Open up the scene you are working on
3. For the water game object, add a box collider and mark it as a trigger. Make sure it covers

the water volume.
4. Add the FluidVolume component (located in Core/) to the water game object.
5. Add the BuoyancyForce component (located in Core/) to a game object that has a

rigidbody component.
6. Drag a collider into the “Buoyancy Collider” slot of the BuoyancyForce component. Use the

collider that is attached to the game object in question or, for compound setups, that is
attached to any of its children.

4 Workflow

One water game object is added for each water area in a scene. Each water game object should
have a trigger box collider and a FluidVolume component attached.

A BuoyancyForce component is attached to each game object that should be able to float in the
water. Tweak the “Weight Factor” value for different behaviors and use the the “Quality” setting
to trade performance for simulation quality. Weighting makes it easy to tweak the buoyancy
forces applied to the rigidbody. If no weighting is used, the toolkit assumes that all object
properties are set to realistic values and the buoyancy forces depend on the scale and mass of
the submerged game object in addition to the density of the fluid it is submerged in. Note that
weighting does not simplify the simulation, it just makes it easer to achieve the desired effect.

During runtime, specific parameter values can be changed using the scripting interface in order
for the simulation to react to events that occur in the game. For example, the “Weight Factor” of
a BuoyancyForce attached to a boat game object can be changed to a value slightly below 1 to
simulate sinking.

5 Components

5.1 BuoyancyForce component

The BuoyancyForce component makes a rigidbody float when entering fluid volumes. It acts on
the Rigidbody of the game object to which it is attached, using a specified collider for buoyancy
calculations. Make sure that the specified collider is attached to the same game object or any of
its children.

Inspector view of the BuoyancyForce component

Buoyancy Collider

The collider that will be used to calculate the buoyancy properties of the rigidbody. The
collider should be convex for stability reasons.

Quality

The quality of the simulation. High values trade performance for simulation quality and
vice versa.

Samples [Only visible when Quality is set to Custom]

The number of sample points used per axis for the buoyancy simulation. High values trade
performance for simulation quality and vice versa.

Use Weighting

A toggle indicating whether this BuoyancyForce uses weighting. Weighting enables easy
tweaking of the buoyancy behaviour. If weighting is not used, realistic proportions,
rigidbody masses and fluid densities are required for realistic behaviour.

Weight Factor

A value indicating the strength of the buoyancy force when weighting is enabled. A weight
factor of 1 results in enough force to counteract gravity and the rigidbody will stay in

file:///C:/Users/o_gus/Documents/Projects/unity-toolkits/BuoyancyToolkit/Assets/Buoyancy%20Toolkit/Documentation/Images/BuoyancyForce_Component.png

equilibrium within the fluid. A weight factor of 2 results in a net force equal to gravity but
in the opposite direction (making the rigidbody float in the fluid) and so on.

Drag Scalar

A scalar that is multiplied by the fluid volume's drag value before being set as linear drag
to the submerged rigidbody.

Angular Drag Scalar

A scalar that is multiplied by the fluid volume's angular drag value before being set as
angular drag to the submerged rigidbody.

Ignore Layers

A bitmask indicating which FluidVolume layers should be ignored by this BuoyancyForce.

Volume

The approximate volume of the buoyancy collider.

Submerged Volume

The approximate volume of the buoyancy collider that is submerged in a fluid volume.

Advanced ⇒ Debug Visualization

A toggle indicating whether or not debug visualizations are rendered.

5.2 FluidVolume component

The FluidVolume component uses a trigger box collider to define a volume in space in which
game objects may float. Custom wave functions can be realized by creating a script that derives
from the FluidVolume class and overrides the GetHeightAt function. (See section 5.2 for more
information)

Inspector view of the FluidVolume component

file:///C:/Users/o_gus/Documents/Projects/unity-toolkits/BuoyancyToolkit/Assets/Buoyancy%20Toolkit/Documentation/Images/FluidVolume_Component.png

Density [kilograms per
cubic unit]

The density of the fluid. Only used when weighting is
disabled.

Rigidbody Drag The linear drag that is applied to a rigidbody submerged in
the fluid volume.

Rigidbody Angular Drag The angular drag that is applied to a rigidbody submerged
in the fluid volume.

6 Scripting reference

6.1 BuoyancyForce component

In order to change the behavior or get information from the BuoyancyForce during runtime, you
can write a custom script that changes the properties or calls functions of the BuoyancyForce
component.

To get a reference to the BuoyancyForce component, use the following code and make sure that
the script is attached to the same game object.

If you want to change the drag of the rigidbody during gameplay, set the NonfluidDrag property
of the attached BuoyancyForce instead. This is required because the BuoyancyForce component
often changes the drag value and needs to keep track of the base line. If there are multiple
BuoyancyForce components attached to the same game object, set the same NonfluidDrag value
to all them. (This caveat also applies to the angularDrag of the rigidbody)

Here is a list of the properties and functions of the BuoyancyForce component.

public void Start()
{
 BuoyancyToolkit.BuoyancyForce f = GetComponent< BuoyancyToolkit.BuoyancyForce >();

 // Now use f
 f.WeightFactor = ...;
}

Name (Return) Type Property/Function Note

BuoyancyCollider Collider Property See section 4.1

Quality BuoyancyQuality Property See section 4.1

Samples int Property See section 4.1

UseWeighting bool Property See section 4.1

WeightFactor float Property See section 4.1

DragScalar float Property See section 4.1

AngularDragScalar float Property See section 4.1

NonfluidDrag float Property

The base
linear drag
that should be
applied to the
rigidbody. Set
to the drag
value of the
connected
rigidbody at
the start of the
scene.

NonfluidAngularDrag float Property

The base
angular drag
that should be
applied to the
rigidbody. Set
to the
angularDrag
value of the
connected
rigidbody at
the start of the
scene.

IgnoreLayers LayerMask Property See section 4.1

FluidVolume FluidVolume Property The fluid

volume that
currently
affects this
buoyancy
force.

IsSubmerged bool Property See section 4.1

IsCompletelySubmerged bool Property See section 4.1

Volume float Property See section 4.1

SubmergedVolume float Property See section 4.1

DebugVisualization bool Property See section 4.1

6.2 FluidVolume component

In order to change the behavior or get information from the FluidVolume during runtime, you
can write a custom script that changes the properties or calls functions of the FluidVolume
component.

To get a reference to the FluidVolume component, use the following code and make sure that
the script is attached to the same game object.

In order to change the surface of the fluid volume, create a new class in a custom script that
derives from the FluidVolume class in the Buoyancy Toolkit. Override the GetHeightAt(Vector3
p) function and implement the desired wave function. The GetHeightAt function takes a world
space point and should return the world height of the surface it this location. Please see the
CustomFluidVolume script (located in Examples/Shared Assets/Scripts) for an example on how
to do this.

Here is a list of the properties and functions of the FluidVolume component.

public void Start()
{
 BuoyancyToolkit.FluidVolume v = GetComponent< BuoyancyToolkit.FluidVolume >();

 // Now use v
 v.density = ...;
}

Name
(Return)
Type

Property/Function Note

density float public variable
See section
4.2

rigidbodyDrag float public variable
See section
4.1

rigidbodyAngularDrag float public variable
See section
4.1

ProjectPointOntoSurface(Vector3
p)

Vector3 Function

Projects a
point onto
the surface
of the fluid
volume.

GetHeightAt(Vector3 p) float Function

Calculates
the height of
the fluid at a
given
location.
Override
this method
in order to
customize
the wave
function.

7 Example scenes

7.0.1 Basic

A simple scene showing a number of objects floating in water.

7.0.2 Compound

A scene demonstrating how to set up the buoyancy force on a more complex game object with
multiple colliders. Please see the “Catamaran” game object and its game object hierarchy.

7.0.3 Waves

A scene demonstrating how to set up a fluid volume with a custom wave function. The “Water”
game object has a CustomFluidVolume script (located in Examples/Shared Assets/Scripts)
attached. Please see section 5.2 for more information.

8 Helpers

8.1 SetCenterOfMass component

The location of the center of mass is important for the stability of a game object submerged in a
fluid volume. A boat will be stable in the water if the center of mass is below the center of
buoyancy, which is calculated by the toolkit. Basically, if a boat or platform always topples over
in the water when it is supposed to lay flat, try to lowering the center of mass of the rigidbody
using this script.

9 Known Limitations

None at the time of this writing.

10 Contact

Please let me know if you run into any problems when using the toolkit or if you have feedback
on how I can improve it in the future. I am also interested in seeing projects that use any of my
toolkits in practice as it motivates me to work harder!

Website: http://gustavolsson.com/

Contact: http://gustavolsson.com/contact/

Copyright 2011-2020 Gustav Olsson

http://gustavolsson.com/
http://gustavolsson.com/contact/

formatted by Markdeep 1.11
✒

https://casual-effects.com/markdeep

